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KEY FINDINGS
1. The world’s oceans have absorbed about 93% of the excess heat caused by greenhouse gas warming 

since the mid-20th century, making them warmer and altering global and regional climate feedbacks. 
Ocean heat content has increased at all depths since the 1960s and surface waters have warmed by 
about 1.3° ± 0.1°F (0.7° ± 0.08°C) per century globally since 1900 to 2016. Under a higher scenario, a 
global increase in average sea surface temperature of 4.9° ± 1.3°F (2.7° ± 0.7°C) by 2100 is projected, 
with even higher changes in some U.S. coastal regions. (Very high confidence)

2. The potential slowing of the Atlantic meridional overturning circulation (AMOC; of which the 
Gulf Stream is one component)—as a result of increasing ocean heat content and freshwater driven 
buoyancy changes—could have dramatic climate feedbacks as the ocean absorbs less heat and CO2 
from the atmosphere. This slowing would also affect the climates of North America and Europe. Any 
slowing documented to date cannot be directly tied to anthropogenic forcing primarily due to lack of 
adequate observational data and to challenges in modeling ocean circulation changes. Under a higher 
scenario (RCP8.5) in CMIP5 simulations, the AMOC weakens over the 21st century by 12% to 54% 
(low confidence).

3. The world’s oceans are currently absorbing more than a quarter of the CO2 emitted to the atmo-
sphere annually from human activities, making them more acidic (very high confidence), with potential 
detrimental impacts to marine ecosystems. In particular, higher-latitude systems typically have a 
lower buffering capacity against pH change, exhibiting seasonally corrosive conditions sooner than 
low-latitude systems. Acidification is regionally increasing along U.S. coastal systems as a result of 
upwelling (for example, in the Pacific Northwest) (high confidence), changes in freshwater inputs (for 
example, in the Gulf of Maine) (medium confidence), and nutrient input (for example, in agricultural 
watersheds and urbanized estuaries) (high confidence). The rate of acidification is unparalleled in at 
least the past 66 million years (medium confidence). Under the higher scenario (RCP8.5), the global 
average surface ocean acidity is projected to increase by 100% to 150% (high confidence). 

4. Increasing sea surface temperatures, rising sea levels, and changing patterns of precipitation, winds, 
nutrients, and ocean circulation are contributing to overall declining oxygen concentrations at inter-
mediate depths in various ocean locations and in many coastal areas. Over the last half century, major 
oxygen losses have occurred in inland seas, estuaries, and in the coastal and open ocean (high confi-
dence). Ocean oxygen levels are projected to decrease by as much as 3.5% under the higher scenario 
(RCP8.5) by 2100 relative to preindustrial values (high confidence). 

http://doi.org/10.7930/J0QV3JQB


13 | Ocean Acidification and Other Ocean Changes

365 Climate Science Special ReportU.S. Global Change Research Program 

13.0 A Changing Ocean 
Anthropogenic perturbations to the global 
Earth system have included important alter-
ations in the chemical composition, tempera-
ture, and circulation of the oceans. Some of 
these changes will be distinguishable from the 
background natural variability in nearly half 
of the global open ocean within a decade, with 
important consequences for marine ecosys-
tems and their services.1 However, the time-
frame for detection will vary depending on 
the parameter featured.2, 3 

13.1 Ocean Warming

13.1.1 General Background
Approximately 93% of excess heat energy 
trapped since the 1970s has been absorbed 
into the oceans, lessening atmospheric warm-
ing and leading to a variety of changes in 
ocean conditions, including sea level rise and 
ocean circulation (see Ch. 2: Physical Driv-
ers of Climate Change, Ch. 6: Temperature 
Change, and Ch. 12: Sea Level Rise in this 
report).1, 4 This is the result of the high heat ca-
pacity of seawater relative to the atmosphere, 
the relative area of the ocean compared to the 
land, and the ocean circulation that enables 
the transport of heat into deep waters. This 
large heat absorption by the oceans moderates 
the effects of increased anthropogenic green-
house emissions on terrestrial climates while 
altering the fundamental physical properties 
of the ocean and indirectly impacting chem-
ical properties such as the biological pump 
through increased stratification.1, 5 Although 
upper ocean temperature varies over short- 
and medium timescales (for example, seasonal 
and regional patterns), there are clear long-
term increases in surface temperature and 
ocean heat content over the past 65 years.4, 6, 7 

13.1.2 Ocean Heat Content
Ocean heat content (OHC) is an ideal variable 
to monitor changing climate as it is calculat-
ed using the entire water column, so ocean 

warming can be documented and compared 
between particular regions, ocean basins, and 
depths. However, for years prior to the 1970s, 
estimates of ocean uptake are confined to the 
upper ocean (up to 700 m) due to sparse spa-
tial and temporal coverage and limited ver-
tical capabilities of many of the instruments 
in use. OHC estimates are improved for time 
periods after 1970 with increased sampling 
coverage and depth.4, 8 Estimates of OHC have 
been calculated going back to the 1950s us-
ing averages over longer time intervals (i.e., 
decadal or 5-year intervals) to compensate for 
sparse data distributions, allowing for clear 
long-term trends to emerge (e.g., Levitus et al. 
20127).

From 1960 to 2015, OHC significantly in-
creased for both 0–700 and 700–2,000 m 
depths, for a total ocean warming of about 
33.5 ± 7.0 × 1022 J (a net heating of 0.37 ± 0.08 
W/m2; Figure 13.1).6 During this period, 
there is evidence of an acceleration of ocean 
warming beginning in 1998,9 with a total 
heat increase of about 15.2 × 1022 J.6 Robust 
ocean warming occurs in the upper 700 m 
and is slow to penetrate into the deep ocean. 
However, the 700–2,000 m depths constitute 
an increasing portion of the total ocean ener-
gy budget as compared to the surface ocean 
(Figure 13.1).6 The role of the deep ocean 
(below 2,000 m [6,600 ft]) in ocean heat uptake 
remains uncertain, both in the magnitude but 
also the sign of the uptake.10, 11 Penetration 
of surface waters to the deep ocean is a slow 
process, which means that while it takes only 
about a decade for near-surface temperatures 
to respond to increased heat energy, the deep 
ocean will continue to warm, and as a result 
sea levels will rise for centuries to millennia 
even if all further emissions cease.4
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Several sources have documented warming in 
all ocean basins from 0–2,000 m depths over the 
past 50 years (Figure 13.2).6, 7, 12 Annual fluctu-
ations in surface temperatures and OHC are 
attributed to the combination of a long-term 
secular trend and decadal and smaller time 
scale variations, such as the Pacific Decadal Os-
cillation (PDO) and the Atlantic Multidecadal 
Oscillation (AMO) (Ch. 5: Circulation & Vari-
ability; Ch. 12: Sea Level Rise).13, 14 The trans-
port of heat to the deep ocean is likely linked to 
the strength of the Atlantic Meridional Over-
turning Circulation (see Section 13.2.1), where 
the Atlantic and Southern Ocean accounts for 
the dominant portion of total OHC change at 
the 700–2,000 m depth.6, 8, 9, 15 Decadal variabil-

ity in ocean heat uptake is mostly attributed 
to ENSO phases (with El Niños warming and 
La Niñas cooling). For instance, La Niña con-
ditions over the past decade have led to colder 
ocean temperatures in the eastern tropical 
Pacific.6, 8, 9, 16 For the Pacific and Indian Oceans, 
the decadal shifts are primarily observed in 
the upper 350 m depth, likely due to shallow 
subtropical circulation, leading to an abrupt 
increase of OHC in the Indian Ocean carried 
by the Indonesian throughflow from the Pacific 
Ocean over the last decade.9 Although there is 
natural variability in ocean temperature, there 
remain clear increasing trends due to anthropo-
genic influences. 

Figure 13.1: Global Ocean heat content change time series. Ocean heat content from 0 to 700 m (blue), 700 to 2,000 
m (red), and 0 to 2,000 m (dark gray) from 1955 to 2015 with an uncertainty interval of ±2 standard deviations shown 
in shading. All time series of the analysis performed by Cheng et al.6 are smoothed by a 12-month running mean filter, 
relative to the 1997–2005 base period. (Figure source: Cheng et al. 20176).
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13.1.3 Sea Surface Temperature and U.S. Regional 
Warming
In addition to OHC, sea surface temperature 
(SST) measurements are widely available. 
SST measurements are useful because 1) the 
measurements have been taken over 150 years 
(albeit using different platforms, instruments, 
and depths through time); 2) SST reflects the 
lower boundary condition of the atmosphere; 
and 3) SST can be used to predict specific 
regional impacts of global warming on ter-
restrial and coastal systems.15, 17, 18 Globally, 
surface ocean temperatures have increased by 
1.3° ± 0.1°F (0.70° ± 0.08°C) per century from 
1900 to 2016 for the Extended Reconstructed 
Sea Surface Temperature version 4 (ERSST v4) 
record.19 All U.S. coastal waters have warmed 
by more than 0.7°F (0.4°C) over this period 
as shown in both Table 13.1 and Chapter 6: 
Temperature Change, Figure 6.6. During the 
past 60 years, the rates of increase of SSTs for 
the coastal waters of three U.S. regions were 
above the global average rate. These includ-
ed the waters around Alaska, the Northeast, 
and the Southwest (Table 13.1). Over the 
last decade, some regions have experienced 

increased high ocean temperature anomalies. 
SST in the Northeast has warmed faster than 
99% of the global ocean since 2004, and a peak 
temperature for the region in 2012 was part of 
a large “ocean heat wave” in the Northwest 
Atlantic that persisted for nearly 18 months.20, 

21 Projections indicate that the Northeast will 
continue to warm more quickly than other 
ocean regions through the end of the cen-
tury.22 In the Northwest, a resilient ridge of 
high pressure over the North American West 
Coast suppressed storm activity and mixing, 
which intensified heat in the upper ocean in a 
phenomenon known as “The Blob”.23 Anom-
alously warm waters persisted in the coastal 
waters of the Alaskan and Pacific Northwest 
from 2013 until 2015. Under a higher scenario 
(RCP8.5), SSTs are projected to increase by an 
additional 4.9°F (2.7°C) by 2100 (Figure 13.3), 
whereas for a lower scenario (RCP4.5) the SST 
increase would be 2.3°F (1.3°C).24 In all U.S. 
coastal regions, the warming since 1901 is 
detectable compared to natural variability and 
attributable to anthropogenic forcing, accord-
ing to an analysis of the CMIP5 models (Ch. 6: 
Temperature Change, Figure 6.5). 

Figure 13.2: Ocean heat content changes from 1960 to 2015 for different ocean basins for 0 to 2,000 m depths. Time 
series is relative to the 1997–1999 base period and smoothed by a 12-month running filter by Cheng et al.6 The curves 
are additive, and the ocean heat content changes in different ocean basins are shaded in different colors (Figure 
source: Cheng et al. 20176).
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Table 13.1. Historical sea surface temperature trends (°C per century) and projected 
trends by 2080 (°C) for eight U.S. coastal regions and globally. Historical temperature 
trends are presented for the 1900–2016 and 1950–2016 periods with 95% confidence 
level, observed using the Extended Reconstructed Sea Surface Temperature version 4 
(ERSSTv4).19 Global and regional predictions are calculated for lower and higher scenarios 
(RCP4.5 and RCP8.5, respectively) with 80% spread of all the CMIP5 members compared 
to the 1976–2005 period.151 The historical trends were analyzed for the latitude and longi-
tude in the table, while the projected trends were analyzed for the California Current in-
stead of the Northwest and Southwest separately and for the Bering Sea in Alaska (NOAA).

Region Latitude and 
Longitude

Historical Trend
(°C/100 years)

Projected Trend 
 2080 (relative to  

1976–2005 climate) (°C)

1900–2016 1950–2016 RCP4.5 RCP8.5

Global 0.70 ± 0.08 1.00 ± 0.11 1.3 ± 0.6 2.7 ± 0.7

Alaska 50°–66°N, 
150°–170°W 0.82 ± 0.26 1.22 ± 0.59 2.5 ± 0.6 3.7 ± 1.0

Northwest 
(NW)

40°–50°N, 
120°–132°W 0.64 ± 0.30 0.68 ± 0.70

1.7 ± 0.4 2.8 ± 0.6
Southwest 

(SW)
30°–40°N, 

116°–126°W 0.73 ± 0.33 1.02 ± 0.79

Hawaii (HI) 18°–24°N, 
152°–162°W 0.58 ± 0.19 0.46 ± 0.39 1.6 ± 0.4 2.8 ± 0.6

Northeast (NE) 36°–46°N, 
64°–76°W 0.63 ± 0.31 1.10 ± 0.71 2.0 ± 0.3 3.2 ± 0.6

Southeast (SE) 24°–34°N, 
64°–80°W 0.40 ± 0.18 0.13 ± 0.34 1.6 ± 0.3 2.7 ± 0.4

Gulf of Mexico 
(GOM)

20°–30°N, 
80°–96°W 0.52 ± 0.14 0.37 ± 0.27 1.6 ± 0.3 2.8 ± 0.3

Caribbean 10°–20°N, 
66°–86°W 0.76 ± 0.15 0.77 ± 0.32 1.5 ± 0.4 2.6 ± 0.3
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13.1.4 Ocean Heat Feedback
The residual heat not taken up by the oceans 
increases land surface temperatures (approx-
imately 3%) and atmospheric temperatures 
(approximately 1%), and melts both land and 
sea ice (approximately 3%), leading to sea 
level rise (see Ch. 12: Sea Level Rise).4, 6, 25 The 
meltwater from land and sea ice amplifies 
further subsurface ocean warming and ice 
shelf melting, primarily due to increased ther-
mal stratification, which reduces the ocean’s 
efficiency in transporting heat to deep waters.4 
Surface ocean stratification has increased 
by about 4% during the period 1971–201026 
due to thermal heating and freshening from 
increased freshwater inputs (precipitation 
and evaporation changes and land and sea ice 
melting). The increase of ocean stratification 
will contribute to further feedback of ocean 
warming and, indirectly, mean sea level. In 
addition, increases in stratification are associ-
ated with suppression of tropical cyclone in-
tensification,27 retreat of the polar ice sheets,28 
and reductions of the convective mixing at 
higher latitudes that transports heat to the 

deep ocean through the Atlantic Meridional 
Overturning Circulation.29 Ocean heat uptake 
therefore represents an important feedback 
that will have a significant influence on future 
shifts in climate (see Ch. 2: Physical Drivers of 
Climate Change).

13.2 Ocean Circulation

13.2.1 Atlantic Meridional Overturning Circulation
The Atlantic Meridional Overturning Circula-
tion (AMOC) refers to the three-dimensional, 
time-dependent circulation of the Atlantic 
Ocean, which has been a high priority top-
ic of study in recent decades. The AMOC 
plays an important role in climate through 
its transport of heat, freshwater, and carbon 
(e.g., Johns et al. 2011;30 McDonagh et al. 
2015;31 Talley et al. 201632). AMOC-associated 
poleward heat transport substantially con-
tributes to North American and continental 
European climate (see Ch. 5: Circulation and 
Variability). The Gulf Stream, in contrast to 
other western boundary currents, is expected 
to slow down because of the weakening of 
the AMOC, which would impact the Euro-

Figure 13.3: Projected changes in sea surface temperature (°C) for the coastal United States under the higher scenar-
io (RCP8.5). Projected anomalies for the 2050–2099 period are calculated using a comparison from the average sea 
surface temperatures over 1956–2005. Projected changes are examined using the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) suite of model simulations. (Figure source: NOAA).
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pean climate.33 Variability in the AMOC has 
been attributed to wind forcing on intra-an-
nual time scales and to geostrophic forces on 
interannual to decadal timescales.34 Increased 
freshwater fluxes from melting Arctic Sea and 
land ice can weaken open ocean convection 
and deep-water formation in the Labrador 
and Irminger Seas, which could weaken the 
AMOC (Ch. 11: Arctic Changes; also see Ch. 
5, Section 5.2.3: North Atlantic Oscillation and 
Northern Annular Mode).29, 33 

While one recent study has suggested that the 
AMOC has slowed since preindustrial times29 
and another suggested slowing on faster time 
scales,35 there is at present insufficient obser-
vational evidence to support a finding of long 
term slowdown of AMOC strength over the 
20th century4 or within the last 50 years34 as 
decadal ocean variability can obscure long-
term trends. Some studies show long-term 
trends,36, 37 but the combination of sparse data 
and large seasonal variability may also lead 
to incorrect interpretations (e.g., Kanzow 
et al. 201038). Several recent high resolution 
modeling studies constrained with the limit-
ed existing observational data39 and/or with 
reconstructed freshwater fluxes40 suggest that 
the recently observed AMOC slowdown at 
26°N (off the Florida coast) since 2004 (e.g., as 
described in Smeed et al. 201435) is mainly due 
to natural variability, and that anthropogenic 
forcing has not yet caused a significant AMOC 
slowdown. In addition, direct observations of 
the AMOC in the South Atlantic fail to unam-
biguously demonstrate anthropogenic trends 
(e.g., Dong et al. 2015;41 Garzoli et al. 201342). 

Under a higher scenario (RCP8.5) in CMIP5 
simulations, it is very likely that the AMOC 
will weaken over the 21st century. The project-
ed decline ranges from 12% to 54%,43 with the 
range width reflecting substantial uncertainty 
in quantitative projections of AMOC behavior. 
In lower scenarios (like RCP4.5), CMIP5 mod-

els predict a 20% weakening of the AMOC 
during the first half of the 21st century and a 
stabilization and slight recovery after that.44 
The projected slowdown of the AMOC will 
be counteracted by the warming of the deep 
ocean (below 700 m [2,300 ft]), which will 
tend to strengthen the AMOC.45 The situa-
tion is further complicated due to the known 
bias in coupled climate models related to the 
direction of the salinity transport in models 
versus observations, which is an indicator of 
AMOC stability (e.g., Drijhout et al. 2011;46 
Bryden et al. 2011;47 Garzoli et al. 201342). Some 
argue that coupled climate models should 
be corrected for this known bias and that 
AMOC variations could be even larger than 
the gradual decrease most models predict if 
the AMOC were to shut down completely and 
“flip states”.48 Any AMOC slowdown could 
result in less heat and CO2 absorbed by the 
ocean from the atmosphere, which is a posi-
tive feedback to climate change (also see Ch. 2: 
Physical Drivers of Climate Change).49, 50, 51

13.2.2 Changes in Salinity Structure
As a response to warming, increased atmo-
spheric moisture leads to stronger evapora-
tion or precipitation in terrestrial and oceanic 
environments and melting of land and sea ice. 
Approximately 80% of precipitation/evapo-
ration events occur over the ocean, leading to 
patterns of higher salt content or freshwater 
anomalies and changes in ocean circulation 
(see Ch. 2: Physical Drivers of Climate Change 
and Ch. 6: Temperature Change).52 Over 1950–
2010, average global amplification of the sur-
face salinity pattern amounted to 5.3%; where 
fresh regions in the ocean became fresher and 
salty regions became saltier.53 However, the 
long-term trends of these physical and chemi-
cal changes to the ocean are difficult to isolate 
from natural large-scale variability. In partic-
ular, ENSO displays particular salinity and 
precipitation/evaporation patterns that skew 
the trends. More research and data are neces-
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sary to better model changes to ocean salinity. 
Several models have shown a similar spatial 
structure of surface salinity changes, including 
general salinity increases in the subtropical 
gyres, a strong basin-wide salinity increase 
in the Atlantic Ocean, and reduced salinity in 
the western Pacific warm pools and the North 
Pacific subpolar regions.52, 53 There is also a 
stronger distinction between the upper salty 
thermocline and fresh intermediate depth 
through the century. The regional changes in 
salinity to ocean basins will have an overall 
impact on ocean circulation and net primary 
production, leading to corresponding carbon 
export (see Ch. 2: Physical Drivers of Climate 
Change). In particular, the freshening of the 
Arctic Ocean due to melting of land and sea 
ice can lead to buoyancy changes which could 
slow down the AMOC (see Section 13.2.1).

13.2.3 Changes in Upwelling
Significant changes to ocean stratification and 
circulation can also be observed regionally, 
along the eastern ocean boundaries and at the 
equator. In these areas, wind-driven upwell-
ing brings colder, nutrient- and carbon-rich 
water to the surface; this upwelled water is 
more efficient in heat and anthropogenic CO2 
uptake. There is some evidence that coastal 
upwelling in mid- to high-latitude eastern 
boundary regions has increased in intensity 
and/or frequency,54 but in more tropical areas 
of the western Atlantic, such as in the Carib-
bean Sea, it has decreased between 1990 and 
2010.55, 56 This has led to a decrease in primary 
productivity in the southern Caribbean Sea.55 
Within the continental United States, the Cali-
fornia Current is experiencing fewer (by about 
23%–40%) but stronger upwelling events.57, 58, 

59 Stronger offshore upwelling combined with 
cross-shelf advection brings nutrients from 
the deeper ocean but also increased offshore 
transport.60 The net nutrient load in the coastal 
regions is responsible for increased productiv-
ity and ecosystem function. 

IPCC 2013 concluded that there is low con-
fidence in the current understanding of how 
eastern upwelling systems will be altered 
under future climate change because of the ob-
scuring role of multidecadal climate variabil-
ity.26 However, subsequent studies show that 
by 2100, upwelling is predicted to start earlier 
in the year, end later, and intensify in three of 
the four major eastern boundary upwelling 
systems (not in the California Current).61 In 
the California Current, upwelling is projected 
to intensify in spring but weaken in summer, 
with changes emerging from the envelope of 
natural variability primarily in the second half 
of the 21st century.62 Southern Ocean upwell-
ing will intensify while the Atlantic equato-
rial upwelling systems will weaken.57, 61 The 
intensification is attributed to the strength-
ening of regional coastal winds as observa-
tions already show,58 and model projections 
under the higher scenario (RCP8.5) estimate 
wind intensifying near poleward boundaries 
(including northern California Current) and 
weakening near equatorward boundaries (in-
cluding southern California Current) for the 
21st century.61, 63 

13.3 Ocean Acidification

13.3.1 General Background
In addition to causing changes in climate, 
increasing atmospheric levels of carbon di-
oxide (CO2) from the burning of fossil fuels 
and other human activities, including chang-
es in land use, have a direct effect on ocean 
carbonate chemistry that is termed ocean 
acidification.64, 65 Surface ocean waters absorb 
part of the increasing CO2 in the atmosphere, 
which causes a variety of chemical changes in 
seawater: an increase in the partial pressure 
of CO2 (pCO2,sw), dissolved inorganic carbon 
(DIC), and the concentration of hydrogen and 
bicarbonate ions and a decrease in the concen-
tration of carbonate ions (Figure 13.4). In brief, 
CO2 is an acid gas that combines with water 
to form carbonic acid, which then dissociates 
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to hydrogen and bicarbonate ions. Increasing 
concentrations of seawater hydrogen ions 
result in a decrease of carbonate ions through 
their conversion to bicarbonate ions. The con-
centration of carbonate ions in seawater affects 
saturation states for calcium carbonate com-
pounds, which many marine species use to 
build their shells and skeletons. Ocean acidity 
refers to the concentration of hydrogen ions in 
ocean seawater regardless of ocean pH, which 
is fundamentally basic (e.g., pH > 7). Ocean 

surface waters have become 30% more acidic 
over the last 150 years as they have absorbed 
large amounts of CO2 from the atmosphere,66 
and anthropogenically sourced CO2 is gradu-
ally invading into oceanic deep waters. Since 
the preindustrial period, the oceans have ab-
sorbed approximately 29% of all CO2 emitted 
to the atmosphere.67 Oceans currently absorb 
about 26% of the human-caused CO2 anthro-
pogenically emitted into the atmosphere.67

Figure 13.4: Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the 
Hawai‘i Ocean Time-series (HOT) Program in the North Pacific over 1988–2015. The upper panel shows the linked 
increase in atmospheric (red points) and seawater (blue points) CO2 concentrations. The bottom panel shows a de-
cline in seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). 
Ocean chemistry data were obtained from the Hawai‘i Ocean Time-series Data Organization & Graphical System 
(HOT-DOGS, http://hahana.soest.hawaii.edu/hot/hot-dogs/index.html). (Figure source: NOAA).

Carbon Dioxide

Air

Sea

*calculated from discrete water samples

270

CO
32−

(µ
mo

l/k
g)260

250
240
230
220
210

1980
7.80
7.85
7.90
7.95
8.00
8.05
8.10
8.15
300
325
350
375
400

pH
pp

m

1985 1990 1995 2000
Year

2005 2010 2015



13 | Ocean Acidification and Other Ocean Changes

373 Climate Science Special ReportU.S. Global Change Research Program 

13.3.2 Open Ocean Acidification
Surface waters in the open ocean experience 
changes in carbonate chemistry reflective of 
large-scale physical oceanic processes (see Ch. 
2: Physical Drivers of Climate Change). These 
processes include both the global uptake of 
atmospheric CO2 and the shoaling of natural-
ly acidified subsurface waters due to vertical 
mixing and upwelling. In general, the rate 
of ocean acidification in open ocean surface 
waters at a decadal time-scale closely approx-
imates the rate of atmospheric CO2 increase.68 
Large, multidecadal phenomena such as the 
Atlantic Multidecadal Oscillation and Pacific 
Decadal Oscillation can add variability to the 
observed rate of change.68 

13.3.3 Coastal Acidification
Coastal shelf and nearshore waters are influ-
enced by the same processes as open ocean 
surface waters such as absorption of atmo-
spheric CO2 and upwelling, as well as a num-
ber of additional, local-level processes, includ-
ing freshwater, nutrient, sulfur, and nitrogen 
inputs.69, 70 Coastal acidification generally ex-
hibits higher-frequency variability and short-
term episodic events relative to open-ocean 
acidification.71, 72, 73, 74 Upwelling is of particular 
importance in coastal waters, especially along 
the U.S. West Coast. Deep waters that shoal 
with upwelling are enriched in CO2 due to up-
take of anthropogenic atmospheric CO2 when 
last in contact with the atmosphere, coupled 
with deep water respiration processes and 
lack of gas exchange with the atmosphere.65, 

75 Freshwater inputs to coastal waters change 
seawater chemistry in ways that make it more 
susceptible to acidification, largely by fresh-
ening ocean waters and contributing varying 
amounts of dissolved inorganic carbon (DIC), 
total alkalinity (TA), dissolved and particulate 
organic carbon, and nutrients from riverine 
and estuarine sources. Coastal waters of the 
East Coast and mid-Atlantic are far more in-
fluenced by freshwater inputs than are Pacific 

Coast waters.76 Coastal waters can episodically 
experience riverine and glacial melt plumes 
that create conditions in which seawater can 
dissolve calcium carbonate structures.77, 78 
While these processes have persisted histor-
ically, climate-induced increases in glacial 
melt and high-intensity precipitation events 
can yield larger freshwater plumes than 
have occurred in the past. Nutrient runoff 
can increase coastal acidification by creating 
conditions that enhance biological respiration. 
In brief, nutrient loading typically promotes 
phytoplankton blooms, which, when they die, 
are consumed by bacteria. Bacteria respire 
CO2 and thus bacterial blooms can result in 
acidification events whose intensity depends 
on local hydrographic conditions, including 
water column stratification and residence 
time.72 Long-term changes in nutrient loading, 
precipitation, and/or ice melt may also impart 
long-term, secular changes in the magnitude 
of coastal acidification. 

13.3.4 Latitudinal Variation
Ocean carbon chemistry is highly influ-
enced by water temperature, largely because 
the solubility of CO2 in seawater increases 
as water temperature declines. Thus, cold, 
high-latitude surface waters can retain more 
CO2 than warm, lower-latitude surface wa-
ters.76, 79 Because carbonate minerals also more 
readily dissolve in colder waters, these waters 
can more regularly become undersaturated 
with respect to calcium carbonate whereby 
mineral dissolution is energetically favored. 
This chemical state, often referred to as sea-
water being “corrosive” to calcium carbonate, 
is important when considering the ecological 
implications of ocean acidification as many 
species make structures such as shells and 
skeletons from calcium carbonate. Seawater 
conditions undersaturated with respect to 
calcium carbonate are common at depth, but 
currently and historically rare at the surface 
and near-surface.80 Some high-latitude surface 
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and near-surface waters now experience such 
corrosive conditions, which are rarely docu-
mented in low-latitude surface or near-surface 
systems. For example, corrosive conditions 
at a range of ocean depths have been docu-
mented in the Arctic and northeastern Pacific 
Oceans.74, 79, 81, 82 Storm-induced upwelling 
could cause undersaturation in tropical ar-
eas in the future.83 It is important to note that 
low-latitude waters are experiencing a greater 
absolute rate of change in calcium carbonate 
saturation state than higher latitudes, though 
these low-latitude waters are not approaching 
the undersaturated state except within near-
shore or some benthic habitats.84

13.3.5 Paleo Evidence
Evidence suggests that the current rate of 
ocean acidification is the fastest in the last 66 
million years (the K-Pg boundary) and pos-
sibly even the last 300 million years (when 
the first pelagic calcifiers evolved providing 
proxy information and also a strong carbonate 
buffer, characteristic of the modern ocean).85, 86 
The Paleo-Eocene Thermal Maximum (PETM; 
around 56 million years ago) is often refer-
enced as the closest analogue to the present, 
although the overall rate of change in CO2 
conditions during that event (estimated be-
tween 0.6 and 1.1 GtC/year) was much lower 
than the current increase in atmospheric CO2 
of 10 GtC/year.86, 87 The relatively slower rate 
of atmospheric CO2 increase at the PETM like-
ly led to relatively small changes in carbonate 
ion concentration in seawater compared with 
the contemporary acidification rate, due to the 
ability of rock weathering to buffer the change 
over the longer time period.86 Some of the pre-
sumed acidification events in Earth’s history 
have been linked to selective extinction events 
suggestive of how guilds of species may re-
spond to the current acidification event.85 

13.3.6 Projected Changes
Projections indicate that by the end of the 
century under higher scenarios, such as SRES 
A1FI or RCP8.5, open-ocean surface pH will 
decline from the current average level of 8.1 
to a possible average of 7.8 (Figure 13.5).1 
When the entire ocean volume is considered 
under the same scenario, the volume of waters 
undersaturated with respect to calcium car-
bonate could expand from 76% in the 1990s to 
91% in 2100, resulting in a shallowing of the 
saturation horizons—depths below which un-
dersaturation occurs.1, 88 Saturation horizons, 
which naturally vary among ocean basins, 
influence ocean carbon cycles and organisms 
with calcium carbonate structures, especially 
as they shoal into the zones where most biota 
lives.81, 89 As discussed above, for a variety 
of reasons, not all ocean and coastal regions 
will experience acidification in the same way 
depending on other compounding factors. 
For instance, recent observational data from 
the Arctic Basin show that the Beaufort Sea 
became undersaturated, for part of the year, 
with respect to aragonite in 2001, while other 
continental shelf seas in the Arctic Basin are 
projected to do so closer to the middle of the 
century (e.g., the Chukchi Sea in about 2033 
and Bering Sea in about 2062).90 Deviation 
from the global average rate of acidification 
will be especially true in coastal and estuarine 
areas where the rate of acidification is influ-
enced by other drivers than atmospheric CO2, 
some of which are under the control of local 
management decisions (for example, nutrient 
pollution loads).
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13.4 Ocean Deoxygenation 

13.4.1 General Background
Oxygen is essential to most life in the ocean, 
governing a host of biogeochemical and bi-
ological processes. Oxygen influences meta-
bolic, physiological, reproductive, behavioral, 
and ecological processes, ultimately shaping 
the composition, diversity, abundance, and 
distribution of organisms from microbes to 
whales. Increasingly, climate-induced oxygen 
loss (deoxygenation) associated with ocean 
warming and reduced ventilation to deep wa-
ters has become evident locally, regionally, and 
globally. Deoxygenation can also be attributed 
to anthropogenic nutrient input, especially in 
the coastal regions, where the nutrients can 
lead to the proliferation of primary production 
and, consequently, enhanced drawdown of 
dissolved oxygen by microbes.91 In addition, 
acidification (Section 13.2) can co-occur with 
deoxygenation as a result of warming-en-
hanced biological respiration.92 As aerobic 
organisms respire, O2 is consumed and CO2 is 
produced. Understanding the combined effect 
of both low O2 and low pH on marine ecosys-
tems is an area of active research.93 Warming 
also raises biological metabolic rates which, 
in combination with intensified coastal and 
estuarine stratification, exacerbates eutrophi-
cation-induced hypoxia. We now see earlier 

onset and longer periods of seasonal hypoxia 
in many eutrophic sites, most of which occur 
in areas that are also warming.91 

13.4.2 Climate Drivers of Ocean Deoxygenation
Global ocean deoxygenation is a direct effect 
of warming. Ocean warming reduces the 
solubility of oxygen (that is, warmer water can 
hold less oxygen) and changes physical mix-
ing (for example, upwelling and circulation) 
of oxygen in the oceans. The increased tem-
perature of global oceans accounts for about 
15% of current global oxygen loss,94 although 
changes in temperature and oxygen are not 
uniform throughout the ocean.15 Warming also 
exerts direct influence on thermal stratification 
and enhances salinity stratification through 
ice melt and climate change-associated precip-
itation effects. Intensified stratification leads 
to reduced ventilation (mixing of oxygen into 
the ocean interior) and accounts for up to 85% 
of global ocean oxygen loss.94 Effects of ocean 
temperature change and stratification on oxy-
gen loss are strongest in intermediate or mode 
waters at bathyal depths (in general, 200–3,000 
m) and also nearshore and in the open ocean; 
these changes are especially evident in tropical 
and subtropical waters globally, in the Eastern 
Pacific,95 and in the Southern Ocean.94

Figure 13.5: Predicted change in sea surface pH in 2090–2099 relative to 1990–1999 under the higher scenario 
(RCP8.5), based on the Community Earth System Models–Large Ensemble Experiments CMIP5 (Figure source: 
adapted from Bopp et al. 201324).
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There are also other, less direct effects of global 
temperature increase. Warming on land reduc-
es terrestrial plant water efficiency (through 
effects on stomata; see Ch. 8: Drought, Floods, 
and Wildfires, Key Message 3), leading to 
greater runoff, on average, into coastal zones 
(see Ch. 8: Drought, Floods, and Wildfires for 
other hydrological effects of warming) and 
further enhancing hypoxia potential because 
greater runoff can mean more nutrient trans-
port (See Ch. 2: Physical Drivers of Climate 
Change).96, 97 Estuaries, especially ones with 
minimal tidal mixing, are particularly vulner-
able to oxygen-depleted dead zones from the 
enhanced runoff and stratification. Warming 
can induce dissociation of frozen methane 
in gas hydrates buried on continental mar-
gins, leading to further drawdown of oxygen 
through aerobic methane oxidation in the 
water column.98 On eastern ocean boundaries, 
warming can enhance the land–sea tempera-
ture differential, causing increased upwelling 
due to higher winds with (a) greater nutrient 
input leading to production, sinking, decay, 
and biochemical drawdown of oxygen and (b) 
upwelling of naturally low-oxygen, high-CO2 
waters onto the upper slope and shelf environ-
ments.58, 65 However, in the California Current, 
upwelling intensification has occurred only in 
the poleward regions (north of San Francisco), 
and the drivers may not be associated with 
land–sea temperature differences.63 Taken to-
gether, the effects of warming are manifested 
as low-oxygen water in open oceans are being 
transported to and upwelled along coastal 
regions. These low-oxygen upwelled waters 
are then coupled with eutrophication-induced 
hypoxia, further reducing oxygen content in 
coastal areas.

Changes in precipitation, winds, circulation, 
airborne nutrients, and sea level can also 
contribute to ocean deoxygenation. Project-
ed increases in precipitation in some regions 
will intensify stratification, reducing vertical 

mixing and ventilation, and intensify nutrient 
input to coastal waters through excess runoff, 
which leads to increased algal biomass and 
concurrent dissolved oxygen consumption via 
community respiration.99 Coastal wetlands 
that might remove these nutrients before they 
reach the ocean may be lost through rising sea 
level, further exacerbating hypoxia.97 Some 
observations of oxygen decline are linked 
to regional changes in circulation involving 
low-oxygen water masses. Enhanced fluxes of 
airborne iron and nitrogen are interacting with 
natural climate variability and contributing to 
fertilization, enhanced respiration, and oxygen 
loss in the tropical Pacific.100 

13.4.3 Biogeochemical Feedbacks of Deoxygen-
ation to Climate and Elemental Cycles
Climate patterns and ocean circulation have a 
large effect on global nitrogen and oxygen cy-
cles, which in turn affect phosphorus and trace 
metal availability and generate feedbacks 
to the atmosphere and oceanic production. 
Global ocean productivity may be affected 
by climate-driven changes below the tropical 
and subtropical thermocline which control 
the volume of suboxic waters (< 5 micromolar 
O2), and consequently the loss of fixed nitro-
gen through denitrification.101, 102 The extent 
of suboxia in the open ocean also regulates 
the production of the greenhouse gas nitrous 
oxide (N2O); as oxygen declines, greater N2O 
production may intensify global warming, 
as N2O is about 310 times more effective at 
trapping heat than CO2 (see Ch. 2: Physical 
Drivers of Climate Change, Section 2.3.2).103, 104 
Production of hydrogen sulfide (H2S, which is 
highly toxic) and intensified phosphorus recy-
cling can occur at low oxygen levels.105 Other 
feedbacks may emerge as oxygen minimum 
zone (OMZ) shoaling diminishes the depths of 
diurnal vertical migrations by fish and inver-
tebrates, and as their huge biomass and associ-
ated oxygen consumption deplete oxygen.106
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13.4.4 Past Trends
Over hundreds of millions of years, oxygen 
has varied dramatically in the atmosphere 
and ocean and has been linked to biodiversity 
gains and losses.107, 108 Variation in oxygen-
ation in the paleo record is very sensitive to 
climate—with clear links to temperature and 
often CO2 variation.109 OMZs expand and con-
tract in synchrony with warming and cooling 
events, respectively.110 Episodic climate events 
that involve rapid temperature increases over 
decades, followed by a cool period lasting a 
few hundred years, lead to major fluctuations 
in the intensity of Pacific and Indian Ocean 
OMZs (i.e., DO of < 20 µM). These events are 
associated with rapid variations in North At-
lantic deep water formation.111 Ocean oxygen 
fluctuates on glacial-interglacial timescales of 
thousands of years in the Eastern Pacific.112, 113 

13.4.5 Modern Observations (last 50+ years)
Long-term oxygen records made over the 
last 50 years reflect oxygen declines in inland 
seas,114, 115, 116 in estuaries,117, 118 and in coast-
al waters.119, 120, 121, 122 The number of coastal, 
eutrophication-induced hypoxic sites in the 
United States has grown dramatically over the 
past 40 years.123 Over larger scales, global syn-
theses show hypoxic waters have expanded 
by 4.5 million km2 at a depth of 200 m,95 with 
widespread loss of oxygen in the Southern 

Ocean,94 Western Pacific,124 and North Atlan-
tic.125 Overall oxygen declines have been great-
er in coastal oceans than in the open ocean126 
and often greater inshore than offshore.127 
The emergence of a deoxygenation signal in 
regions with naturally high oxygen variability 
will unfold over longer time periods (20–50 
years from now).128

13.4.6 Projected Changes
Global Models
Global models generally agree that ocean 
deoxygenation is occurring; this finding is 
also reflected in in situ observations from 
past 50 years. Compilations of 10 Earth Sys-
tem models predict a global average loss of 
oxygen of −3.5% (higher scenario, RCP8.5) 
to −2.4% (lower scenario, RCP4.5) by 2100, 
but much stronger losses regionally, and in 
intermediate and mode waters (Figure 13.6).24 
The North Pacific, North Atlantic, Southern 
Ocean, subtropical South Pacific, and South 
Indian Oceans all are expected to experience 
deoxygenation, with O2 decreases of as much 
as 17% in the North Pacific by 2100 for the 
RCP8.5 pathway. However, the tropical Atlan-
tic and tropical Indian Oceans show increasing 
O2 concentrations. In the many areas where 
oxygen is declining, high natural variability 
makes it difficult to identify anthropogenically 
forced trends.128
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Regional Models
Regional models are critical because many 
oxygen drivers are local, influenced by ba-
thymetry, winds, circulation, and fresh water 
and nutrient inputs. Most eastern boundary 
upwelling areas are predicted to experience 
intensified upwelling to 2100,61 although on 
the West Coast projections for increasing 
upwelling for the northern California Current 
occur only north of San Francisco (see Section 
13.2.3).

Particularly notable for the western United 
States, variation in trade winds in the eastern 
Pacific Ocean can affect nutrient inputs, lead-
ing to centennial periods of oxygen decline or 
oxygen increase distinct from global oxygen 
decline.129 Oxygen dynamics in the Eastern 
Tropical Pacific are highly sensitive to equato-
rial circulation changes.130 

Regional modeling also shows that year-to-
year variability in precipitation in the central 
United States affects the nitrate–N flux by the 
Mississippi River and the extent of hypox-

ia in the Gulf of Mexico.131 A host of climate 
influences linked to warming and increased 
precipitation are predicted to lower dissolved 
oxygen in Chesapeake Bay.132

13.5 Other Coastal Changes

13.5.1 Sea Level Rise
Sea level is an important variable that affects 
coastal ecosystems. Global sea level rose rap-
idly at the end of the last glaciation, as glaciers 
and the polar ice sheets thinned and melted at 
their fringes. On average around the globe, sea 
level is estimated to have risen at rates exceed-
ing 2.5 mm/year between about 8,000 and 
6,000 years before present. These rates steadily 
decreased to less than 2.0 mm/year through 
about 4,000 years ago and stabilized at less 
than 0.4 mm/year through the late 1800s. 
Global sea level rise has accelerated again 
within the last 100 years, and now averages 
about 1 to 2 mm/year.133 See Chapter 12: Sea 
Level Rise for more thorough analysis of how 
sea level rise has already and will affect the 
U.S. coasts.

Figure 13.6: Predicted change in dissolved oxygen on the σθ = 26.5 (average depth of approximately 290 m) potential 
density surface, between the 1981–2000 and 2081–2100, based on the Community Earth System Models–Large En-
semble Experiments (Figure source: redrawn from Long et al. 2016128). 
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13.5.2 Wet and Dry Deposition
Dust transported from continental desert re-
gions to the marine environment deposits nu-
trients such as iron, nitrogen, phosphorus, and 
trace metals that stimulate growth of phyto-
plankton and increase marine productivity.134 
U.S. continental and coastal regions experi-
ence large dust deposition fluxes originating 
from the Saharan desert to the East and from 
Central Asia and China to the Northwest.135 
Changes in drought frequency or intensity re-
sulting from anthropogenically forced climate 
change, as well as other anthropogenic activ-
ities such as agricultural practices and land-
use changes may play an important role in 
the future viability and strength of these dust 
sources (e.g., Mulitza et al. 2010136). 

Additionally, oxidized nitrogen, released 
during high-temperature combustion over 
land, and reduced nitrogen, released from 
intensive agriculture, are emitted in high pop-
ulation areas in North America and are carried 
away and deposited through wet or dry depo-
sition over coastal and open ocean ecosystems 
via local wind circulation. Wet deposition of 
pollutants produced in urban areas is known 
to play an important role in changes of eco-
system structure in coastal and open ocean 
systems through intermediate changes in the 
biogeochemistry, for instance in dissolved 
oxygen or various forms of carbon.137

13.5.3 Primary Productivity
Marine phytoplankton represent about half 
of the global net primary production (NPP) 
(approximately 50 ± 28 GtC /year), fixing 
atmospheric CO2 into a bioavailable form for 
utilization by higher trophic levels (see also 
Ch. 2: Physical Drivers of Climate Change).138, 

139 As such, NPP represents a critical compo-
nent in the role of the oceans in climate feed-
back. The effect of climate change on primary 
productivity varies across the coasts depend-
ing on local conditions. For instance, nutrients 

that stimulate phytoplankton growth are 
impacted by various climate conditions, such 
as increased stratification which limits the 
transport of nutrient-rich deep water to the 
surface, changes in circulation leading to vari-
ability in dry and wet deposition of nutrients 
to coasts, and altered precipitation/evapora-
tion which changes runoff of nutrients from 
coastal communities. The effect of the multiple 
physical factors on NPP is complex and leads 
to model uncertainties.140 There is consider-
able variation in model projections for NPP, 
from estimated decreases or no changes, to the 
potential increases by 2100.141, 142, 143 Simula-
tions from nine Earth system models projected 
total NPP in 2090 to decrease by 2%–16% and 
export production (that is, particulate flux to 
the deep ocean) to drop by 7%–18% as com-
pared to 1990 (RCP8.5).142 More information 
on phytoplankton species response and asso-
ciated ecosystem dynamics is needed as any 
reduction of NPP and the associated export 
production would have an impact on carbon 
cycling and marine ecosystems.

13.5.4 Estuaries
Estuaries are critical ecosystems of biological, 
economic, and social importance in the United 
States. They are highly dynamic, influenced 
by the interactions of atmospheric, freshwater, 
terrestrial, oceanic, and benthic components. 
Of the 28 national estuarine research reserves 
in the United States and Puerto Rico, all are 
being impacted by climate change to varying 
levels.144 In particular, sea level rise, saltwa-
ter intrusion, and the degree of freshwater 
discharge influence the forces and processes 
within these estuaries.145 Sea level rise and 
subsidence are leading to drowning of existing 
salt marshes and/or subsequent changes in 
the relative area of the marsh plain, if adaptive 
upslope movement is impeded due to urban-
ization along shorelines. Several model sce-
narios indicate a decline in salt marsh habitat 
quality and an accelerated degradation as the 
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rate of sea level rise increases in the latter half 
of the century.146, 147 The increase in sea level as 
well as alterations to oceanic and atmospheric 
circulation can result in extreme wave con-
ditions and storm surges, impacting coastal 
communities.144 Additional climate change 
impacts to the physical and chemical estuarine 
processes include more extreme sea surface 
temperatures (higher highs and lower lows 
compared to the open ocean due to shallower 
depths and influence from land temperatures), 
changes in flow rates due to changes in pre-
cipitation, and potentially greater extents of 
salinity intrusion.
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TRACEABLE ACCOUNTS
Key Finding 1
The world’s oceans have absorbed about 93% of the 
excess heat caused by greenhouse gas warming since 
the mid-20th century, making them warmer and alter-
ing global and regional climate feedbacks. Ocean heat 
content has increased at all depths since the 1960s 
and surface waters have warmed by about 1.3° ± 0.1°F 
(0.7° ± 0.08°C) per century globally since 1900 to 2016. 
Under a higher scenario, a global increase in average 
sea surface temperature of 4.9° ± 1.3°F (2.7° ± 0.7°C) by 
2100 is projected, with even higher changes in some 
U.S. coastal regions. (Very high confidence)

Description of evidence base
The key finding and supporting text summarizes the 
evidence documented in climate science literature, in-
cluding Rhein et al. 2013.4 Oceanic warming has been 
documented in a variety of data sources, most nota-
bly the World Ocean Circulation Experiment (WOCE) 
(http://www.nodc.noaa.gov/woce/wdiu/) and Argo 
databases (https://www.nodc.noaa.gov/argo/) and 
Extended Reconstructed Sea Surface Temperature 
(ERSST) v4 (https://www.ncdc.noaa.gov/data-access/
marineocean-data/extended-reconstructed-sea-sur-
face-temperature-ersst-v4). There is particular confi-
dence in calculated warming for the time period since 
1971 due to increased spatial and depth coverage and 
the level of agreement among independent SST ob-
servations from satellites, surface drifters and ships, 
and independent studies using differing analyses, 
bias corrections, and data sources.6, 7, 11 Other observa-
tions such as the increase in mean sea level rise (see 
Ch. 12: Sea Level Rise) and reduced Arctic/Antarctic 
ice sheets (see Ch. 11: Arctic Changes) further confirm 
the increase in thermal expansion. For the purpose of 
extending the selected time periods back from 1900 
to 2016 and analyzing U.S. regional SSTs, the ERSST 
version 4 (ERSSTv4)19 is used. For the centennial time 
scale changes over 1900–2016, warming trends in all 
regions are statistically significant with the 95% con-
fidence level. U.S. regional SST warming is similar be-
tween calculations using ERSSTv4 in this report and 
those published by Belkin,148 suggesting confidence in 
these findings. The projected increase in SST is based 

on evidence from the latest generation of Earth System 
Models (CMIP5).

Major uncertainties
Uncertainties in the magnitude of ocean warming stem 
from the disparate measurements of ocean tempera-
ture over the last century. There is low uncertainty in 
warming trends of the upper ocean temperature from 
0–700 m depth, whereas there is more uncertainty 
for deeper ocean depths of 700–2,000 m due to the 
short record of measurements from those areas. Data 
on warming trends at depths greater than 2,000 m are 
even more sparse. There are also uncertainties in the 
timing and reasons for particular decadal and interan-
nual variations in ocean heat content and the contri-
butions that different ocean basins play in the overall 
ocean heat uptake.

Summary sentence or paragraph that integrates 
the above information
There is very high confidence in measurements that 
show increases in the ocean heat content and warm-
ing of the ocean, based on the agreement of different 
methods. However, long-term data in total ocean heat 
uptake in the deep ocean are sparse leading to limited 
knowledge of the transport of heat between and with-
in ocean basins.

Key Finding 2
The potential slowing of the Atlantic Meridional Over-
turning Circulation (AMOC; of which the Gulf Stream is 
one component)—as a result of increasing ocean heat 
content and freshwater driven buoyancy changes—
could have dramatic climate feedbacks as the ocean 
absorbs less heat and CO2 from the atmosphere.51 This 
slowing would also affect the climates of North Amer-
ica and Europe. Any slowing documented to date can-
not be directly tied to anthropogenic forcing primarily 
due to lack of adequate observational data and to chal-
lenges in modeling ocean circulation changes. Under 
a higher scenario (RCP8.5) in CMIP5 simulations, the 
AMOC weakens over the 21st century by 12% to 54% 
(low confidence).
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Description of evidence base
Investigations both through direct observations and 
models since 20134 have raised significant concerns 
about whether there is enough evidence to determine 
the existence of an overall slowdown in the AMOC. As 
a result, more robust international observational cam-
paigns are underway currently to measure AMOC circu-
lation. Direct observations have determined a statistical-
ly significant slowdown at the 95% confidence level at 
26°N (off Florida; see Baringer et al. 2016149) but model-
ing studies constrained with observations cannot attri-
bute this to anthropogenic forcing.39 The study29 which 
seemed to indicate broad-scale slowing has since been 
discounted due to its heavy reliance on sea surface tem-
perature cooling as proxy for slowdown rather than ac-
tual direct observations. Since Rhein et al. 2013,4 more 
observations have led to increased statistical confidence 
in the measurement of the AMOC. Current observation 
trends indicate the AMOC slowing down at the 95% con-
fidence level at 26°N and 41°N but a more limited in situ 
estimate at 35°S, shows an increase in the AMOC.35, 149 
There is no one collection spot for AMOC-related data, 
but the U.S. Climate Variability and Predictability Pro-
gram (US CLIVAR) has a U.S. AMOC priority focus area 
and a webpage with relevant data sites (https://usclivar.
org/amoc/amoc-time-series). 

The IPCC 2013 WG1 projections indicate a high likeli-
hood of AMOC slowdown in the next 100 years, how-
ever overall understanding is limited by both a lack of 
direct observations (which is being remedied) and a 
lack of model skill to resolve deep ocean dynamics. As a 
result, this key finding was given an overall assessment 
of low confidence.

Major uncertainties
As noted, uncertainty about the overall trend of the 
AMOC is high given opposing trends in northern and 
southern ocean time series observations. Although 
earth system models do indicate a high likelihood 
of AMOC slowdown as a result of a warming, climate 
projections are subject to high uncertainty. This un-
certainty stems from intermodel differences, internal 
variability that is different in each model, uncertainty 
in stratification changes, and most importantly uncer-

tainty in both future freshwater input at high latitudes 
as well as the strength of the subpolar gyre circulation.

Summary sentence or paragraph that integrates 
the above information
The increased focus on direct measurements of the 
AMOC should lead to a better understanding of 1) 
how it is changing and its variability by region, and 2) 
whether those changes are attributable to climate driv-
ers through both model improvements and incorpora-
tion of those expanded observations into the models.

Key Finding 3
The world’s oceans are currently absorbing more than a 
quarter of the CO2 emitted to the atmosphere annually 
from human activities, making them more acidic (very 
high confidence), with potential detrimental impacts to 
marine ecosystems. In particular, higher-latitude sys-
tems typically have a lower buffering capacity against 
pH change, exhibiting seasonally corrosive conditions 
sooner than low-latitude systems. Acidification is re-
gionally increasing along U.S. coastal systems as a re-
sult of upwelling (for example, in the Pacific Northwest) 
(high confidence), changes in freshwater inputs (for 
example, in the Gulf of Maine) (medium confidence), 
and nutrient input (for example, in agricultural water-
sheds and urbanized estuaries) (high confidence). The 
rate of acidification is unparalleled in at least the past 
66 million years (medium confidence). Under the high-
er scenario (RCP8.5), the global average surface ocean 
acidity is projected to increase by 100% to 150% (high 
confidence). 

Description of evidence base
Evidence on the magnitude of the ocean sink is ob-
tained from multiple biogeochemical and transport 
ocean models and two observation-based estimates 
from the 1990s for the uptake of the anthropogen-
ic CO2. Estimates of the carbonate system (DIC and 
alkalinity) were based on multiple survey cruises in 
the global ocean in the 1990s (WOCE – now GO-SHIP, 
JGOFS). Coastal carbon and acidification surveys have 
been executed along the U.S. coastal large marine eco-
system since at least 2007, documenting significantly 
elevated pCO2 and low pH conditions relative to oce-

https://usclivar.org/amoc/amoc-time-series
https://usclivar.org/amoc/amoc-time-series
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anic waters. The data are available from the National 
Centers for Environmental Information (https://www.
ncei.noaa.gov/). Other sources of biogeochemical bot-
tle data can be found from HOT-DOGS ALOHA (http://
hahana.soest.hawaii.edu/hot/hot-dogs) or CCHDO 
(https://cchdo.ucsd.edu/). Rates of change associated 
with the Palaeocene-Eocene Thermal Maximum (PETM, 
56 million years ago) were derived using stable carbon 
and oxygen isotope records preserved in the sedimen-
tary record from the New Jersey shelf using time se-
ries analysis and carbon cycle–climate modelling. This 
evidence supports a carbon release during the onset 
of the PETM over no less than 4,000 years, yielding a 
maximum sustained carbon release rate of less than 1.1 
GtC per year.86 The projected increase in global surface 
ocean acidity is based on evidence from ten of the lat-
est generation earth system models which include six 
distinct biogeochemical models that were included in 
the latest IPCC AR5 2013. 

Major uncertainties
In 2014 the ocean sink was 2.6 ± 0.5 GtC (9.5 GtCO2), 
equivalent to 26% of the total emissions attributed to 
fossil fuel use and land use changes.67 Estimates of the 
PETM ocean acidification event evidenced in the geo-
logical record remains a matter of some debate within 
the community. Evidence for the 1.1 GtC per year cit-
ed by Zeebe et al.,86 could be biased as a result of brief 
pulses of carbon input above average rates of emis-
sions were they to transpire over timescales ≲ 40 years. 

Summary sentence or paragraph that integrates 
the above information
There is very high confidence in evidence that the oceans 
absorb about a quarter of the carbon dioxide emitted 
in the atmosphere and hence become more acidic. The 
magnitude of the ocean carbon sink is known at a high 
confidence level because it is estimated using a series of 
disparate data sources and analysis methods, while the 
magnitude of the interannual variability is based only 
on model studies. There is medium confidence that the 
current rate of climate acidification is unprecedented in 
the past 66 million years. There is also high confidence 
that oceanic pH will continue to decrease.

Key Finding 4
Increasing sea surface temperatures, rising sea levels, 
and changing patterns of precipitation, winds, nutri-
ents, and ocean circulation are contributing to over-
all declining oxygen concentrations at intermediate 
depths in various ocean locations and in many coastal 
areas. Over the last half century, major oxygen loss-
es have occurred in inland seas, estuaries, and in the 
coastal and open ocean (high confidence). Ocean ox-
ygen levels are projected to decrease by as much as 
3.5% under the higher scenario (RCP8.5) by 2100 rela-
tive to preindustrial values (high confidence). 

Description of evidence base
The key finding and supporting text summarizes the 
evidence documented in climate science literature 
including Rhein et al. 2013,4 Bopp et al. 2013,24 and 
Schmidtko et al. 2017.150 Evidence arises from extensive 
global measurements of the WOCE after 1989 and in-
dividual profiles before that.94 The first basin-wide dis-
solved oxygen surveys were performed in the 1920s.150 
The confidence level is based on globally integrated O2 
distributions in a variety of ocean models. Although 
the global mean exhibits low interannual variability, re-
gional contrasts are large. 

Major uncertainties
Uncertainties (as estimated from the intermodel 
spread) in the global mean are moderate mainly be-
cause ocean oxygen content exhibits low interannual 
variability when globally averaged. Uncertainties in 
long-term decreases of the global averaged oxygen 
concentration amount to 25% in the upper 1,000 m 
for the 1970–1992 period and 28% for the 1993–2003 
period. Remaining uncertainties relate to regional vari-
ability driven by mesoscale eddies and intrinsic climate 
variability such as ENSO. 

Summary sentence or paragraph that integrates 
the above information
Major ocean deoxygenation is taking place in bodies 
of water inland, at estuaries, and in the coastal and the 
open ocean (high confidence). Regionally, the phenom-
enon is exacerbated by local changes in weather, ocean 
circulation, and continental inputs to the oceans.
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